Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. II. Existence theorems for weak solutions
نویسندگان
چکیده
منابع مشابه
WEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS
The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...
متن کاملExistence Theorems for General Control Problems of Bolza and Lagrange
The existence of solutions is established for a very general class of problems in the calculus of variations and optimal control involving ordinary differential equations or contingent equations. The theorems, while relatively simple to state, cover, besides the more classical cases, problems with considerably weaker assumptions of continuity or boundedness. For example, the cost functional may...
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملExistence Theorems for Multidimensional Lagrange Problemsl
Existence theorems are proved for multidimensional Lagrange problems of the calculus of variations and optimal control. The unknowns are functions of several independent variables in a fixed bounded domain, the cost functional is a multiple integral, and the side conditions are partial differential equations, not necessarily linear, with assigned boundary conditions. Also, unilateral constraint...
متن کاملSet Intersection Theorems and Existence of Optimal Solutions
The question of nonemptiness of the intersection of a nested sequence of closed sets is fundamental in a number of important optimization topics, including the existence of optimal solutions, the validity of the minimax inequality in zero sum games, and the absence of a duality gap in constrained optimization. We consider asymptotic directions of a sequence of closed sets, and introduce associa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1966
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1966-0203543-3